p-group, metabelian, nilpotent (class 2), monomial
Aliases: C42.257C23, C4⋊C8⋊48C22, C24.75(C2×C4), (C22×C4).63Q8, C4.60(C22×Q8), C23.31(C4⋊C4), (C2×C8).395C23, (C2×C4).634C24, C42.201(C2×C4), (C22×C4).414D4, C4.186(C22×D4), C4⋊M4(2)⋊30C2, C42⋊C2.27C4, C2.8(Q8○M4(2)), (C2×C42).752C22, (C22×C8).427C22, (C23×C4).517C22, C23.138(C22×C4), C22.163(C23×C4), (C22×C4).1502C23, C42.6C22⋊26C2, (C22×M4(2)).29C2, C42⋊C2.283C22, (C2×M4(2)).337C22, C4.62(C2×C4⋊C4), (C2×C4⋊C4).66C4, C4⋊C4.213(C2×C4), (C2×C4).60(C4⋊C4), (C2×C4).840(C2×D4), C22.34(C2×C4⋊C4), C2.20(C22×C4⋊C4), (C2×C4).236(C2×Q8), (C2×C22⋊C4).43C4, C22⋊C4.64(C2×C4), (C2×C4).248(C22×C4), (C22×C4).328(C2×C4), (C2×C42⋊C2).52C2, SmallGroup(128,1637)
Series: Derived ►Chief ►Lower central ►Upper central ►Jennings
Generators and relations for C42.257C23
G = < a,b,c,d,e | a4=b4=d2=e2=1, c2=b, ab=ba, cac-1=a-1, dad=ab2, ae=ea, bc=cb, bd=db, be=eb, cd=dc, ece=b2c, de=ed >
Subgroups: 332 in 242 conjugacy classes, 172 normal (14 characteristic)
C1, C2, C2, C2, C4, C4, C4, C22, C22, C22, C8, C2×C4, C2×C4, C2×C4, C23, C23, C23, C42, C22⋊C4, C4⋊C4, C2×C8, C2×C8, M4(2), C22×C4, C22×C4, C24, C4⋊C8, C2×C42, C2×C22⋊C4, C2×C4⋊C4, C42⋊C2, C22×C8, C2×M4(2), C2×M4(2), C23×C4, C4⋊M4(2), C42.6C22, C2×C42⋊C2, C22×M4(2), C42.257C23
Quotients: C1, C2, C4, C22, C2×C4, D4, Q8, C23, C4⋊C4, C22×C4, C2×D4, C2×Q8, C24, C2×C4⋊C4, C23×C4, C22×D4, C22×Q8, C22×C4⋊C4, Q8○M4(2), C42.257C23
(1 19 31 14)(2 15 32 20)(3 21 25 16)(4 9 26 22)(5 23 27 10)(6 11 28 24)(7 17 29 12)(8 13 30 18)
(1 3 5 7)(2 4 6 8)(9 11 13 15)(10 12 14 16)(17 19 21 23)(18 20 22 24)(25 27 29 31)(26 28 30 32)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)
(9 13)(10 14)(11 15)(12 16)(17 21)(18 22)(19 23)(20 24)
(1 31)(2 28)(3 25)(4 30)(5 27)(6 32)(7 29)(8 26)(9 18)(10 23)(11 20)(12 17)(13 22)(14 19)(15 24)(16 21)
G:=sub<Sym(32)| (1,19,31,14)(2,15,32,20)(3,21,25,16)(4,9,26,22)(5,23,27,10)(6,11,28,24)(7,17,29,12)(8,13,30,18), (1,3,5,7)(2,4,6,8)(9,11,13,15)(10,12,14,16)(17,19,21,23)(18,20,22,24)(25,27,29,31)(26,28,30,32), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32), (9,13)(10,14)(11,15)(12,16)(17,21)(18,22)(19,23)(20,24), (1,31)(2,28)(3,25)(4,30)(5,27)(6,32)(7,29)(8,26)(9,18)(10,23)(11,20)(12,17)(13,22)(14,19)(15,24)(16,21)>;
G:=Group( (1,19,31,14)(2,15,32,20)(3,21,25,16)(4,9,26,22)(5,23,27,10)(6,11,28,24)(7,17,29,12)(8,13,30,18), (1,3,5,7)(2,4,6,8)(9,11,13,15)(10,12,14,16)(17,19,21,23)(18,20,22,24)(25,27,29,31)(26,28,30,32), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32), (9,13)(10,14)(11,15)(12,16)(17,21)(18,22)(19,23)(20,24), (1,31)(2,28)(3,25)(4,30)(5,27)(6,32)(7,29)(8,26)(9,18)(10,23)(11,20)(12,17)(13,22)(14,19)(15,24)(16,21) );
G=PermutationGroup([[(1,19,31,14),(2,15,32,20),(3,21,25,16),(4,9,26,22),(5,23,27,10),(6,11,28,24),(7,17,29,12),(8,13,30,18)], [(1,3,5,7),(2,4,6,8),(9,11,13,15),(10,12,14,16),(17,19,21,23),(18,20,22,24),(25,27,29,31),(26,28,30,32)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32)], [(9,13),(10,14),(11,15),(12,16),(17,21),(18,22),(19,23),(20,24)], [(1,31),(2,28),(3,25),(4,30),(5,27),(6,32),(7,29),(8,26),(9,18),(10,23),(11,20),(12,17),(13,22),(14,19),(15,24),(16,21)]])
44 conjugacy classes
class | 1 | 2A | 2B | 2C | 2D | ··· | 2I | 4A | 4B | 4C | 4D | 4E | ··· | 4J | 4K | ··· | 4R | 8A | ··· | 8P |
order | 1 | 2 | 2 | 2 | 2 | ··· | 2 | 4 | 4 | 4 | 4 | 4 | ··· | 4 | 4 | ··· | 4 | 8 | ··· | 8 |
size | 1 | 1 | 1 | 1 | 2 | ··· | 2 | 1 | 1 | 1 | 1 | 2 | ··· | 2 | 4 | ··· | 4 | 4 | ··· | 4 |
44 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 4 |
type | + | + | + | + | + | + | - | ||||
image | C1 | C2 | C2 | C2 | C2 | C4 | C4 | C4 | D4 | Q8 | Q8○M4(2) |
kernel | C42.257C23 | C4⋊M4(2) | C42.6C22 | C2×C42⋊C2 | C22×M4(2) | C2×C22⋊C4 | C2×C4⋊C4 | C42⋊C2 | C22×C4 | C22×C4 | C2 |
# reps | 1 | 4 | 8 | 1 | 2 | 4 | 4 | 8 | 4 | 4 | 4 |
Matrix representation of C42.257C23 ►in GL6(𝔽17)
4 | 0 | 0 | 0 | 0 | 0 |
1 | 13 | 0 | 0 | 0 | 0 |
0 | 0 | 5 | 15 | 0 | 0 |
0 | 0 | 12 | 12 | 0 | 0 |
0 | 0 | 4 | 0 | 4 | 15 |
0 | 0 | 1 | 13 | 16 | 13 |
16 | 0 | 0 | 0 | 0 | 0 |
0 | 16 | 0 | 0 | 0 | 0 |
0 | 0 | 13 | 0 | 0 | 0 |
0 | 0 | 0 | 13 | 0 | 0 |
0 | 0 | 0 | 0 | 13 | 0 |
0 | 0 | 0 | 0 | 0 | 13 |
16 | 8 | 0 | 0 | 0 | 0 |
4 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 15 | 0 | 9 | 1 |
0 | 0 | 13 | 0 | 0 | 0 |
0 | 0 | 2 | 13 | 2 | 0 |
16 | 0 | 0 | 0 | 0 | 0 |
0 | 16 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 5 | 16 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 4 | 0 | 4 | 16 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 16 | 0 |
0 | 0 | 4 | 0 | 0 | 16 |
G:=sub<GL(6,GF(17))| [4,1,0,0,0,0,0,13,0,0,0,0,0,0,5,12,4,1,0,0,15,12,0,13,0,0,0,0,4,16,0,0,0,0,15,13],[16,0,0,0,0,0,0,16,0,0,0,0,0,0,13,0,0,0,0,0,0,13,0,0,0,0,0,0,13,0,0,0,0,0,0,13],[16,4,0,0,0,0,8,1,0,0,0,0,0,0,0,15,13,2,0,0,0,0,0,13,0,0,1,9,0,2,0,0,0,1,0,0],[16,0,0,0,0,0,0,16,0,0,0,0,0,0,1,5,0,4,0,0,0,16,0,0,0,0,0,0,1,4,0,0,0,0,0,16],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,4,0,0,0,1,0,0,0,0,0,0,16,0,0,0,0,0,0,16] >;
C42.257C23 in GAP, Magma, Sage, TeX
C_4^2._{257}C_2^3
% in TeX
G:=Group("C4^2.257C2^3");
// GroupNames label
G:=SmallGroup(128,1637);
// by ID
G=gap.SmallGroup(128,1637);
# by ID
G:=PCGroup([7,-2,2,2,2,-2,2,-2,224,253,120,723,2019,124]);
// Polycyclic
G:=Group<a,b,c,d,e|a^4=b^4=d^2=e^2=1,c^2=b,a*b=b*a,c*a*c^-1=a^-1,d*a*d=a*b^2,a*e=e*a,b*c=c*b,b*d=d*b,b*e=e*b,c*d=d*c,e*c*e=b^2*c,d*e=e*d>;
// generators/relations